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Esophageal carcinoma is among the most common human cancers,  
causing over 400,000 deaths worldwide annually1,2. The areas  
with highest risk are located in eastern Asia, as well as eastern and 
southern Africa, and the most prevalent type is ESCC1,2. The 5-year 
survival rates for patients with ESCC undergoing surgery are below 
30% because a large proportion of tumors are unresectable or have 
already metastasized before diagnosis3.

Recently, several large-scale genomic studies have characterized 
ESCC genomes as having hundreds of somatic mutations and copy 
number alterations (CNAs) and have identified significantly mutated 
genes, including TP53, PIK3CA and ZNF750, among others4–9.  
The APOBEC signature is a predominant mutational spectrum and 
contributes to the mutagenic processes of ESCCs6,8. However, the 
genomic alterations identified in all of these studies were obtained 
using only single samples representing individual cases, and little  
is known about the spatial ITH and temporal clonal evolutionary 
processes of the mutational spectrum in ESCC. Moreover, although 
alterations in DNA methylation have been observed in ESCC, the 
degree of ITH for these epigenetic changes is still unknown, and 
whether such heterogeneity correlates with genetic architecture 
remains unexplored.

Precise understanding of both the genomic and epigenomic archi-
tectures of primary ESCC tumors is crucial for the development of 
personalized patient treatment and molecular-based biomarkers10. 
Furthermore, an integrated investigation of the genomic and epi-
genomic evolutionary trajectories of ESCC may also provide new 
insights into the relationship between the genome and epigenome. 
In the present study, we address these critical issues through inte-
grative molecular approaches, including multiregion whole-exome 
sequencing (M-WES) and global methylation profiling, as well as 
phylogenetic and phyloepigenetic tree construction.

RESULTS
Spatial ITH of ESCC
M-WES was performed on genomic DNA from 13 patients with pri-
mary ESCC; the clinicopathological parameters of these patients are 
listed in Supplementary Table 1. In total, 51 tumor regions and 13 
matched morphologically normal esophageal tissue samples (4 tumor 
regions and 1 matched normal tissue sample per case, with the excep-
tion of ESCC04, for which samples were obtained from only 3 tumor 
regions) were sequenced, with a mean coverage depth of 150×. A total 
of 1,610 non-silent somatic mutations (affecting 1,427 genes) and 
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568 silent mutations were identified, with a validation rate of 90% 
(Supplementary Tables 2 and 3).

To explore ITH and the genomic evolution of ESCC, phylogenetic 
trees were constructed on the basis of somatic mutations (both silent 
and non-silent) identified in each tumor region. The trunk, ‘shared’ 
branches and ‘private’ branches of each tree represent mutations in 
all tumor regions, in some but not all tumor regions, and in only one 
tumor region, respectively. The phylogenetic trees varied extensively 
among the different cases (Fig. 1a and Supplementary Fig. 1), and 
all 13 of the ESCCs showed evidence of spatial ITH, with an average 
of 35.8% (780/2,178; range, 8.0–60.9%) of somatic variants having 
spatial heterogeneity.

Characterization of the relative timing of mutations affecting driver 
genes with possible biological relevance is essential for identifying the 
evolutionary processes of the cancer genome, as well as for further 
improving precision medicine strategies. To address this, we identified 
potential driver mutations according to recent large-scale ESCC sequenc-
ing data4–8, the Catalog of Somatic Mutations in Cancer (COSMIC) 
cancer gene census11 and pan-cancer analysis12; these mutations  

were then traced within the phylogenetic trees (Online Methods). 
Overall, driver mutations were significantly more enriched in trunks 
than passenger mutations were (77.8% versus 63.8%; P = 0.023;  
Fig. 1b). This indicates that driver mutations are relatively early events 
during the evolutionary process of the tumors, in accordance with 
previous findings in other tumor types13. We next separated putative 
driver mutations into those occurring in oncogenes or tumor-sup-
pressor genes (TSGs). Notably, half of the driver mutations (50.0%) 
that mapped to branches were in oncogenes, including PIK3CA, KIT, 
NFE2L2, MTOR and FAM135B. In comparison, only 22.4% of the 
driver mutations located on trunks affected oncogenes, and the rest 
were in TSGs. For example, TP53 mutations were present in 12 of the 
13 cases and were truncal in all of the mutated cases, in agreement with 
recent reports14,15. It is worthwhile to note that potentially actionable 
mutations, such as those targeting PIK3CA and MTOR, tended to be 
oncogenic branch events. These findings highlight the additional cau-
tion needed when considering the inhibition of these mutants in ESCC, 
given previous studies showing that the suppression of subclonal driv-
ers leads to growth acceleration for non-mutated subpopulations16.
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Figure 1  ITH of somatic mutations in 13 ESCCs generated by M-WES. (a) Phylogenetic trees were constructed from all somatic mutations by the 
Wagner parsimony method using PHYLIP (Online Methods). Lengths of trunks and branches are proportional to the numbers of mutations acquired. 
Heat maps show the presence (blue) or absence (gray) of a somatic mutation in each tumor region (T). Each gene is arranged in a row, and cancer-
related genes with putative driver mutations are indicated. The total number of mutations (n) and proportion of branched mutations in each case are 
provided above each tree. (b) Bar plots show the proportions of putative driver mutations versus other mutations on the trunks and branches. Statistical 
differences of truncal and branched proportions, between driver and other mutations across all cases, were analyzed using a χ2 test, and a significant  
P value is shown.
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Clonal status of putative driver mutations
We next investigated the clonal status of somatic mutations within 
individual regions. The cancer cell fraction (CCF) for each tumor 
region was calculated as described previously through integrative 
analysis of local copy number, variant allele frequency (VAF) and 
tumor cell purity16,17. Several driver mutations were subclonal and 
possibly occurred as late events in ESCC, including mutations in 
MTOR, KEAP1, PTPRB and FAM135B. In contrast, cancer-related 
genes on the trunks, such as TP53, NOTCH1, CREBBP, KMT2D  
and ZNF750, were predominantly mutated in a fully clonal manner 
(Fig. 2), further verifying our earlier phylogenetic tree analysis show-
ing that these mutations were possibly early lesions during ESCC 
development. Of note, a number of driver variants detected as clonal 
within some individual tumor regions were absent in others from 
the same individual, producing an ‘illusion’ of clonal dominance. For 
example, a PIK3CA hotspot mutation (p.Met1043Ile) was undetect-
able in tumor regions T2 and T3 in case ESCC13 but was clonally 
dominant in the other two regions. Likewise, a hotspot mutation 
in the KIT gene (p.Glu601Lys) was present in 100% of tumor cells 
from regions T1 and T3 in case ESCC08, yet was absent in the rest of  
the tumor regions. Such clonal dominance was also observed for 
mutations in NFE2L2 in case ESCC12. Our results suggest that driver 
mutations can have mixed and complex intratumoral clonal status in 
ESCC and that the current single-sampling approach may misinter-

pret these critical genomic lesions because of the illusion of clonal 
dominance. We further investigated all non-silent variants in genes 
and related pathways that could potentially be targeted therapeutically.  
Mutations affecting components of the phosphoinositide 3-kinase 
(PI3K)–mammalian target of rapamycin (mTOR) pathway (KIT, 
AURKA and CCND2) were always late events (branched/subclonal) 
(Supplementary Fig. 2). By contrast, variants in ERBB4, FGFR2, 
BRCA2, ATM and TP53 were mutated as early events (truncal/clonal), 
suggesting their potential as candidate actionable targets for ESCC.

ITH of copy number alterations
We next analyzed ITH at the copy number level (Supplementary 
Table 4). First, recurrent CNAs that involve important cancer-related 
genes in ESCC were identified on the basis of our previous results6, 
and we confirmed that the present cohort harbored these recurrent 
CNAs at similar frequencies (Supplementary Fig. 3). Although 
CNAs were generally more similar within cases than between dif-
ferent cases, we found extensive ITH for CNAs, with 90% (9/10) of 
all recurrent CNAs being spatially heterogeneous. For example, in 
ESCC08, amplification of chromosome 7p11.2 (encompassing EGFR) 
was observed in regions T1 and T4, but not in regions T2 and T3. 
Similarly, deletions of chromosome 9p21.3 (harboring CDKN2A  
and CDKN2B) were ubiquitous in some cases but also occurred as 
heterogeneous aberrations in other samples. The only driver CNA 
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Figure 2  Clonal status of putative driver mutations in ESCC tumors. A heat map displays the CCF of driver mutations in each region of the ESCC tumors. 
Genomic regions with no segmentation data available are shown as NA.
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found to be consistently ubiquitous was copy number gain of 11q13, 
which encompasses a number of oncogenes, including CCND1, ANO1 
(refs. 18–20) and CTTN21,22, highlighting the importance of this 
aberration as a founder genomic lesion in the development of ESCC.  
These results suggest that, similar to somatic mutations, CNAs also 
show notable spatial ITH, concordant with observations in several 
other types of cancer23–25.

The within-patient mutational rate (mean = 168 mutations per case) 
was higher than the within-region mutational rate (mean = 139 muta-
tions per region; Supplementary Table 5), highlighting the improved 
resolution of our multiple-biopsy approach for genomic interrogation. 
In particular, in the case of cancer-related genes on branches, the cur-
rent M-WES approach markedly increased the sensitivity of the detec-
tion rate (Table 1). For example, ATR and TSC1 mutations, which were 
detected in only 2% of tumor regions (in agreement with previous 
results), occurred in 7.7% of cases. In addition, the proportion of 
subclonal mutations detected in each tumor region was much lower 
than that in each case (Table 2 and Supplementary Fig. 4). These 
results again signify that the analysis of sequencing data obtained from 
a single biopsy will likely underestimate the prevalence of mutations, 
especially for those acquired late in the mutational process24.

Temporal dissection of mutational spectra and signatures
To determine the temporal dynamics of the mutagenic processes 
in ESCC, the mutational spectra of mutations on both trunks and 
branches were analyzed using deconstructSigs26, which identifies 
the linear combination of predefined signatures that most accurately  
reconstructs the mutational profile of a single tumor sample. The over-
all mutational spectra were similar for trunk and branch mutations,  

with very strong enrichment of signature 1 substitutions (associated 
with age) and more subtle but enriched representation of APOBEC-
associated signatures 2 and 13 substitutions (C>G and C>T substi-
tutions in a TCW context, where W = A, G, C or T) (Fig. 3a). We 
next calculated the contributions of individual mutational signatures 
to each tumor (Fig. 3b) and identified several signatures within 
the tumors tested, including signature 1 (age), signatures 2 and 13 
(APOBEC), and signatures 6 and 15 (DNA mismatch repair), in agree-
ment with previous results in esophageal squamous and other squa-
mous-type cancers6,8,27. Interestingly, we noticed that a number of 
tumors displayed a prominent decrease in the relative contribution of 
signature 1 in branch as compared to trunk mutations, although this 
decrease did not reach statistical significance owing to the relatively 
small number of tumors analyzed. In some of these cases, we also 
observed an increase in the contribution of signatures associated with 
DNA damage (including signatures 3 and 15) among the branch muta-
tions (such as in ESCC10 and ESCC12; Fig. 3c,d and Supplementary 
Fig. 5). Interpreting these temporal differences in mutational spectra 
within the same tumor will require further investigations, but the data 
indicate that various mutational processes might have important roles 
in subclonal diversification during the progression of ESCC.

ITH of DNA methylation in ESCC
As with other cancers, epigenetic abnormalities have been associated 
with the development and pathogenesis of ESCC28–30. To decipher 
ESCC ITH at the epigenetic level and its potential relationship with 
subclonal gene mutations, the global methylation levels of 14 M-
WES–profiled tumor and normal tissue pairs from three ESCC cases 
(ESCC01, ESCC03 and ESCC05) were obtained using the Illumina 
HumanMethylation450 (HM450) BeadChip. We first identified CpG 
probes that showed significant differences in methylation between 
tumor regions and normal tissue samples from the same case (except 
for ESCC01, for which a matched normal tissue sample was not avail-
able) and then divided these differentially methylated probes into 
those with shared changes (consistent within all tumor regions from 
the same case) and those with private changes (present in one or 
more of the regions, but not all). We used the probes with private 
changes to infer tumor evolution and constructed phyloepigenetic 
trees for each case on the basis of the Euclidean pairwise distances 
between methylation profiles31,32 (Online Methods). Topological 
similarities were tested between the phyloepigenetic and phyloge-
netic trees for all three cases by determining Robinson–Foulds (RF) 

Table 1  Prevalence of non-silent mutations in ESCC (within 
patient versus within region)

Cancer- 
related  
gene

Prevalence 
(number of 

patients with  
mutation) in  

previous  
studiesa

Within-region 
prevalence  

(number of regions 
with mutation)  
n = 51 regions

Within-patient 
prevalence 
(number of 

patients with 
mutation)  

n = 13 cases

Within  
patient/within 

regionb

TP53 78.9% (430) 94.1% (48) 92.3% (12) 0.98

KMT2D 13.8% (63) 23.5% (12) 23.1% (3) 0.98

NOTCH1 12.8% (70) 21.6% (11) 23.1% (3) 1.07

FAT1 11.2% (51) 15.7% (8) 15.4% (2) 0.98

ZNF750 5.7% (26) 15.7% (8) 15.4% (2) 0.98

FAM135B 6.4% (29) 13.7% (7) 15.4% (2) 1.12

NFE2L2 5.7% (26) 7.8% (4) 15.4% (2) 1.97

PTPRB 2.9% (13) 7.8% (4) 15.4% (2) 1.97

ATM 1.8% (8) 7.8% (4) 7.7% (1) 0.98

BRCA2 3.1% (14) 7.8% (4) 7.7% (1) 0.98

CREBBP 4.2% (19) 7.8% (4) 7.7% (1) 0.98

KMT2A 1.1% (5) 7.8% (4) 7.7% (1) 0.98

NOTCH2 3.3% (18) 7.8% (4) 7.7% (1) 0.98

FAT2 6.4% (29) 5.9% (3) 7.7% (1) 1.31

KEAP1 1.8% (8) 5.9% (3) 7.7% (1) 1.31

MTOR 1.1% (5) 3.9% (2) 7.7% (1) 1.96

TP53BP1 0.9% (4) 3.9% (2) 7.7% (1) 1.96

KIT 0.7% (3) 3.9% (2) 7.7% (1) 1.96

PIK3CA 9.0% (41) 3.9% (2) 7.7% (1) 1.96

ATR 1.1% (5) 2.0% (1) 7.7% (1) 3.92

BRIP1 0.9% (4) 2.0% (1) 7.7% (1) 3.92

TSC1 1.1% (5) 2.0% (1) 7.7% (1) 3.92
aSummary of published data from Agrawal et al.4, Song et al.5, Lin et al.6, Gao et al.7 and 
Zhang et al.8. The total number of cases is 545 for TP53, NOTCH1 and NOTCH2 mutations 
and is 456 for the rest of gene mutations. bFold change when the prevalence was analyzed 
using individual cases instead of individual tumor regions.

Table 2  Prevalence of subclonal mutations in ESCC

Case

Within-region prevalence (%) Within-patient 
prevalence (%)T1 T2 T3 T4

ESCC01 10.1 16.1 26.7 15.4 40.0

ESCC02 14.7 8.2 10.4 14.9 20.5

ESCC03 13.6 7.2 8.4 24.1 33.2

ESCC04 10.7 5.8 NA 1.2 13.3

ESCC05 27.3 21.4 3.6 33.3 48.8

ESCC06 6.9 28.3 5.4 6.1 33.3

ESCC07 6.1 21.1 92.4 61.1 86.1

ESCC08 11.6 12.7 15.4 16.2 31.7

ESCC09 30.4 41.3 5.7 20.0 56.5

ESCC10 21.2 2.0 3.1 6.1 27.0

ESCC11 42.3 35.5 36.0 41.7 66.4

ESCC12 1.4 38.6 6.1 46.3 62.5

ESCC13 29.5 3.0 14.4 29.5 50.0

Within-patient prevalence was derived by dividing the number of subclonal mutations 
by the number of total mutations in each patient.
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distance relative to unrooted trees33 (Fig. 4a). Notably, in accord-
ance with a recent report on glioma32, the RF distances (zero for 
all three cases) suggest high concordance between the genetic and 
epigenetic tree topologies for all three cases (Online Methods). As  
the distinction of private versus shared methylation changes is depend-
ent on the probe selection cutoff used, we further tested four different  

cutoffs and noted that the phyloepigenetic trees were robust to  
cutoff selection and showed highly similar topological structures  
for all cutoff values (Supplementary Fig. 6). Moreover, to alleviate 
confounding effects resulting from contamination with non-tumor 
DNA, two different methods were applied to account for and mitigate 
the potential influence of immune cells (the major non-cancer cell 
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component in these samples; Supplementary Fig. 7); again, similar 
results were observed for the trees when using uncorrected methylation  
values or the values obtained with either correction method (Online 
Methods and Supplementary Fig. 8). These findings suggest a  
possible relationship between genomic and epigenomic alterations 
during the clonal evolution of ESCC cells and are indicative of  
the presence of multiple epigenetically distinct, subclonal cell pop-
ulations, as recently observed in prostate cancer31, glioma32 and  
hepatocellular carcinoma (D.-C.L., A.M., H.Q.D., P. Huang and  
L. Lin et al., unpublished data).

We observed that a number of TSGs, including EPHA7 (refs. 34,35), 
PCDH10 (refs. 36,37) and DOK1 (refs. 38,39), among others, were 
hypermethylated at their promoters within some but not all tumor 
regions from the same case, indicating that their expression might 
be differentially suppressed in different tumor regions. Notably, 
some TSGs were mutated and acquired promoter hypermethylation, 
such as ASXL1 and EPHA7. Interestingly, ASXL1 was subject to both 
truncal/clonal mutation and shared hypermethylation at its promoter, 
suggesting that this gene was disrupted early during both the genomic 
and epigenomic evolutionary processes.

To explore the potential biological relevance of ITH for DNA  
methylation in ESCC, we next sought to determine whether the  
differentially methylated CpG loci in each case were enriched in par-
ticular functional genomic categories. We first divided the CpG probes 
into those where methylation was higher in the tumor than in adjacent 
normal tissues (hypermethylated) and those where methylation was 
lower (hypomethylated). Shared probes were selected for their rela-
tively consistent changes in different tumor regions (Supplementary 
Fig. 9), whereas the remaining (private) probes exhibited prominent 
differences among the tumor regions (Fig. 4b) and reflect the exten-
sive ITH seen in the phyloepigenetic trees. We next compared shared 
and private probes by assigning them to various relevant functional 
genomic categories, including CpG islands (CGIs), CGI shores,  
promoters and enhancers, among others, and compared the frequen-
cies of the probes in each category to the background frequencies, 
determined from all probes on the array (Fig. 4c). As expected, shared 
CpG sites showed several methylation patterns commonly seen across 
cancer types40,41, including strong enrichment of hypermethylated 
probes in CGI promoter regions and depletion of these probes in 
both long-range partially methylated domains (PMDs) and enhancer 
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Figure 4  Epigenetic ITH in ESCC. (a) Phyloepigenetic trees of three ESCC cases. Lengths of trunks and branches were inferred using a phylogenetic 
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provided above each tree. For comparison, the phylogenetic trees from Figure 1 are reproduced below each phyloepigenetic tree. (b) Heat maps show 
the β values of private probes for each case, separated into hyper- and hypomethylation. (c) Overlap between each probe set from b and a variety of 
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regions (after removing CGIs). Shared hypomethylated probes showed 
an inverse distribution: they were markedly depleted in CGI promoters,  
whereas they were enriched in PMDs as well as enhancer regions 
(Fig. 4c). Strikingly, the distribution of private CpG sites for the most 
part resembled that of their shared counterparts (Fig. 4c). In light 
of the known contribution of tumor-specific methylation to cancer  
biology42,43, our results suggest that intratumoral methylation hetero
geneity might have a role in the subclonal diversification of ESCC 
tumors. In support of this view, Gene Ontology (GO) analysis of 
the genes with private hypermethylated probes in their promoters 
showed that they were significantly enriched in cancer-related proc-
esses, including cell proliferation, differentiation, migration, adhe-
sion and transcriptional regulation (Fig. 4d). In addition, we noticed 
that private hypermethylated probes were even more enriched in  
CGI shores than shared hypermethylated probes (Fig. 4c). Given 
previous observations that (i) cancer-specific differentially methyl-
ated regions occur more frequently within CGI shores than within 
CGIs44,45 and (ii) CGI shore methylation correlates with the expres-
sion of associated genes44, our observations further suggest the 
potential involvement of heterogeneity of DNA methylation in the 
evolutionary biology of ESCC cells.

DISCUSSION
ESCC is one of the most common malignancies, with relatively low 
overall 5-year survival rates. The main cause leading to unfavorable 
prognosis of patients with ESCC is the lack of effective therapies. 
Currently, none of the targeted therapies has been established for 
clinical management of ESCC46. Hundreds of genomic alterations, 
including somatic mutations and CNAs, have recently been identified  
in ESCC4–9, but these data have not been translated into clinical appli-
cations. In addition, the genomic and epigenomic ITH and clonal 
evolution of ESCC tumors have not yet been characterized. In light 
of the evidence that ITH is the major cause of drug resistance and 
treatment failure47, deciphering the genomic diversity and clonal 
evolution of ESCC tumors will provide both a theoretical and trans-
lational basis for identifying new targets and designing personalized 
medicine strategies.

In the present study, the genomic ITH of 13 ESCC cases, as well as 
the epigenetic ITH of 3 of these individuals, were investigated through 
a variety of molecular approaches, and concordant tumor evolution-
ary trajectories were found as inferred from both DNA mutations and 
methylation. A very recent study of two ESCC cases reported that 
the ITH rate for somatic mutations was approximately 90% (ref. 48), 
whereas the rates in our study were much lower, with an average of 
35.8%. The discrepancy may well be due to differences in sequencing 
depth between the two studies (50× versus 150×). Although the true 
extent of ITH is difficult to define, high sequencing coverage in our 
study offers improved resolution to decipher the spatial heterogeneity 
and clonal evolution of ESCC.

Although phylogeny analysis based on M-WES is not able to com-
pletely resolve the true temporal ordering of all somatic variants, 
we calculated that an average of 93.5% (range of 87.8 to 97.7%) of 
somatic mutations were compatible with the present phylogenic trees 
(Supplementary Fig. 1). For example, in case ESCC13, 282 of 294 
variants (95.9%) were compatible with the evolution model based 
on the topological structure of the phylogenetic tree, and only 12 
mutations, including ones in PIK3CA, were incompatible with the 
phylogenetic tree (Supplementary Table 6). Therefore, the phylogeny 
method correctly resolves the temporal order of the vast majority 
of somatic mutations. Moreover, the evolutionary models inferred 
from the M-WES–based phylogeny are strongly supported by our 

DNA methylation phylogeny in all three cases (Fig. 4a). Hence, this 
reconstruction of the phylogenetic topologies, from a completely 
independent molecular event, strongly reinforces the validity of these 
evolutionary models.

Resolving the clonal status of driver mutations will help to distin-
guish early from late events, and targeting clonally dominant driver 
mutations (early events) conceivably represents an optimized thera-
peutic strategy10,49. In this study, despite driver mutations having a 
tendency to be truncal/clonal in comparison with passenger mutations, 
approximate 40% of driver mutations were branched or subclonal. This 
observation suggests that these driver mutations were relatively late 
events during tumor evolution and contributed to the emergence of dis-
tinct subclonal expansions after the founding clones were established. 
Notable examples included KIT, components of the PI3K–mTOR path-
way (PIK3CA and MTOR) and components of the NFE2L2 pathway 
(NFE2L2 and KEAP1). These examples, most of which are oncogenes, 
were frequently mutated as late events in ESCC. Furthermore, evidence 
of ‘parallel evolution’ was noted in some cases. For example, ESCC13 
contained branch PIK3CA mutations derived in two spatially separated 
tumor regions, both harboring the p.Met1043Ile variant, which cor-
responds to a hotspot mutation. Similar parallel evolution was also 
observed in NFE2L2 mutations in ESCC12. Interestingly, PIK3CA, KIT 
and NFE2L2 mutations were fully clonal in some tumor regions but 
were completely absent in others, giving an illusion of clonal domi-
nance. In addition, the number of within-patient mutations was higher 
than the number of within-region mutations. These results strongly 
suggest that the prevalence of these driver events and the rate of sub-
clonality overall are likely underestimated when using a single biopsy 
to represent an individual patient.

Although alterations in DNA methylation in ESCC have been 
profiled using single-sampling approaches, their intratumoral diver-
sity and the relationship to genetic lesions remain unknown. In the 
present study, we found a number of TSGs with private hypermethyla-
tion at the promoters, some of which have been associated with either 
tumorigenesis or progression of other cancer types, such as EPHA7 
(refs. 34,50), ABCB4 (ref. 51), PCDH10 (refs. 52,53) and DOK1  
(refs. 38,39). This finding suggests that these genes might be differ-
entially inactivated in different tumor regions from the same indi-
viduals. We found profound epigenetic ITH in ESCC through global 
methylation analysis. Notably, subclonal evolutions inferred from 
DNA methylation closely recapitulated phylogenetic trees, indicat-
ing a possible relationship between genetic and epigenetic alterations 
in ESCC. Therefore, integrative analysis of both phylogenetic and 
phyloepigenetic trees may generate an enhanced understanding of 
clonal architecture, and identify the basis for subclonal epigenetic 
driver events. These features of epigenetic and genetic ITH shown by 
our study may have important implications in ESCC biology.

URLs. BWA-MEM, http://arxiv.org/abs/1303.3997v2; fpFilter Perl 
script, https://github.com/ckandoth/variant-filter; Bam-readcount,  
https://github.com/genome/bam-readcount; PHYLIP, http:// 
evolution.genetics.washington.edu/phylip.html.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Digital sequencing and HM450 BeadChip files  
have been deposited in the Sequence Read Archive (SRA) under 
SRP072112 and the Gene Expression Omnibus (GEO) under 
GSE79366, respectively.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Patients and specimens. Tissue samples from 13 patients with ESCC, including 
primary esophageal tumors and matched morphologically normal esophageal 
epithelial margins, were collected at the Linzhou Esophagus Cancer Hospital, 
Henan province, China. All the samples used in this study were residual speci-
mens collected after diagnosis sampling. All patients received no treatment 
before surgery and signed separate informed consent forms for sampling and 
molecular analyses. We also considered clinicopathological parameters when 
selecting these patients with ESCC, including sex, pathological tumor (pT) 
stage, regional lymph node metastasis and tumor differentiation, to avoid 
bias toward particular pathological characteristics (Supplementary Table 1). 
Specifically, the male/female ratio in the current cohort was similar to that 
reported in the latest publication54. The number of patients with relatively 
early (pT1b or pT2) and late (pT3) tumor stage was five and eight, respectively. 
The status of lymph node metastasis (negative, n = 4; positive, n = 9), as well 
as tumor differentiation (G1, n = 1; G2, n = 6; G2/3, n = 2; G3, n = 4), was also 
taken into account. This study has been approved by the ethics committee 
or institutional review board of the Cancer Hospital/Institute, Peking Union 
Medical College and the Chinese Academy of Medical Sciences (approval 
NCC2013-066). The collection and publication of Chinese human genetic 
data used in the present study has been approved by the Ministry of Science 
and Technology. In 12 of 13 cases, four spatially separated tumor specimens 
were obtained from each individual, with each section at least 0.5 cm away 
from the others. In the case of ESCC04, three tumor regions were sampled. 
We carefully reviewed the hematoxylin and eosin slides for each tumor region 
before subjecting them to whole-exome sequencing analysis, to make sure 
that the tumor cell contents of the selected regions were comparable and were 
at least greater than 60% (representative hematoxylin and eosin images are 
provided in Supplementary Fig. 10).

Multiregional whole-exome sequencing. For each individual, genomic DNA 
of cells from different tumor regions and one matched normal epithelial tissue 
sample at the surgical margins was sequenced. Genomic DNA was extracted 
using the Qiagen DNeasy Blood and Tissue kit according to the manufactur-
er’s instructions. For cases ESCC01 and ESCC02, whole-exome capture of 
genomic DNA was performed by BGI, using the BGI Exome Enrichment kit, 
and massively parallel sequencing of captured genomic DNA was performed 
and results were analyzed by BGI using the Complete Genomics platform. For 
the 11 other cases, the Agilent SureSelect Human All Exon v4 (51 Mb) kit was 
used for whole-exome capture of genomic DNA, and the captured DNA was 
sequenced by BGI using the Illumina HiSeq 4000 sequencing platform, with 
150-bp paired-end sequencing.

Alignment of sequencing reads and somatic variant detection. 150-bp 
paired-end fastq files were aligned to the human reference genome (build 
hg19) using the BWA-MEM aligner in default mode (see URLs). Alignments 
were then filtered for duplicate reads using Samblaster55, and BAM files were 
indel realigned and base quality scores were recalibrated according to GATK 
best practices56.

Somatic variants were detected using VarScan2 (ref. 57). Tumor and 
matched normal pileup files were generated using the SAMtools ‘mpileup’ 
command and fed into the VarScan ‘somatic’ command58. Reference genome 
positions covered by at least 10 reads in the normal sample and 14 reads in 
tumor samples were considered for variant calling. Variants with VAF less than 
0.07 were discarded. Raw somatic variants were filtered using the VarScan 
‘processSomatic’ command with arguments --min-tumor-freq 0.07, --max-
normal-freq 0.02 and --p-value set to 0.05. The resulting high-quality somatic 
variants were filtered for false positives using the fpFilter Perl script (see 
URLs). The filtered variants were annotated with ANNOVAR59 and filtered 
against the dbSNP135 database for commonly occurring SNPs59. Disease- 
associated variants annotated in the ClinVar database and the COSMIC  
database were retained.

Phylogenetic tree construction. For mutations that were detected from at least 
one tumor region, a method described by Stachler et al.60 was used to increase 
the sensitivity of detecting these mutations in other tumor regions from the 
same individual with low VAF. In brief, Bam-readcount (see URLs) was used 

to obtain read counts for unique somatic variants across all tumor regions. 
A variant was considered to be absent if either its VAF was less than 0.02 or 
there were fewer than three reads. The VAFs across all the tumor regions 
for each individual were then used to generate a binary table. Phylogenetic 
trees were constructed on the basis of the binary tables using Discrete 
Character Parsimony, implemented in the PHYLogeny Inference Package 
(see URLs), with the matched morphologically normal epithelial margins as 
outgroup roots. On the basis of calculated branch/trunk lengths inferred from  
mutation counts, final trees were drawn manually.

Cancer cell fraction analysis. Copy number analysis from whole-exome 
sequencing data was performed using ReCapSeg, which is implemented as 
part of GATK (v4). Briefly, read counts for each of the exome targets were 
extracted from all samples and were divided by the total number of reads to 
generate proportional coverage. A panel of normal controls14 was created using 
proportional coverage from all of the normal samples. Each of the tumor sam-
ples was compared to a panel of normal controls (PoN), followed by tangent 
normalization. The normalized coverage profiles were then segmented using 
circular binary segmentation61. Variants on the sex chromosomes (X and Y) 
were excluded from this analysis.

Tumor cellularity was determined on the basis of VAF and segmented copy 
number data using ABSOLUTE62, to determine the CCF of each mutation, as 
was previously described by McGranahan et al.13. Clonal status was defined 
according to the confidence interval of CCF. Mutations were classified as sub-
clonal if the upper bound of their 95% confidence interval was less than 1.

Identification of putative driver mutations. We first identified putative can-
cer driver genes on the basis of recent large-scale ESCC sequencing data4–8, the 
COSMIC cancer gene census (August 2015)11 and pan-cancer analysis12. Next, 
non-silent variants in these genes were evaluated, and putative driver muta-
tions were identified if they met one of the following requirements: (i) either 
the exact mutation, the same mutation site or at least three mutations located 
within 15 bp of the variant were found in COSMIC and (ii) if the candidate 
gene was marked as recessive in COSMIC and the variant was predicted to be 
deleterious, including stop-gain, frameshift and splicing mutation, and had a 
SIFT score <0.05 (ref. 63) or a PolyPhen score >0.995 (refs. 64,65).

Mutational signature analysis. Both silent and non-silent somatic mutations 
were classified as either truncal or branch as described earlier, and the muta-
tional signatures of these variants were generated separately. We performed a 
multiple regression approach, deconstructSigs26, to extract signatures based on 
the Wellcome Trust Sanger Institute Mutational Signature Framework27 and to 
statistically quantify the contribution of each signature for each tumor.

DNA methylation analysis and construction of phyloepigenetic trees. 
The DNA methylation profiles of 12 tumor regions and 2 matched normal 
esophageal epithelial tissue samples from 3 ESCC cases examined by M-WES 
(ESCC01, ESCC03 and ESCC05) were generated using the Illumina Infinium 
HumanMethylation450 platform at the University of Southern California 
Norris Comprehensive Cancer Center Genomics Core. We performed basic 
data processing of the HM450 data using many of the same processing steps 
that we performed previously for The Cancer Genome Atlas (TCGA) data 
analysis, which is based on the Methylumi R package66 with several additional 
quality control steps. Probes with detection P values greater than 0.01 in any 
of the samples were removed, as were probes overlapping with dbSNP SNPs 
and probes on the X or Y chromosome.

For intratumoral analysis, we defined a probe as private if the difference in β 
values for any single pair of tumor regions was at least 0.3; we defined a probe 
as shared if the differences in β values for all pairs of tumor regions were less 
than 0.1. Only private probes were used for construction of phyloepigenetic 
trees. For each tumor, pairwise Euclidean distances were calculated between 
all tumor regions using the complete set of private probes.

Phyloepigenetic trees were constructed from these pairwise distances, using 
the minimal evolution method implemented by the fastme.bal function in the 
R package ape67. Different probe selection cutoffs for calling private and shared 
probes produced similar results, with only minimal changes in cases ESCC01 
(at the cutoff of 0.5) and ESCC05 (at the cutoff of 0.2; Supplementary Fig. 6).  
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Topological comparison for phylogenetic versus phyloepigenetic trees and 
other tree pairs was performed using the RF.dist function in the CRAN R 
package phangorn. Comparison in case ESCC01 was carried out on the basis 
of only tumor samples because of the lack of a matched normal sample in DNA 
methylation data (for visualization in Fig. 4a, we used normal samples from 
the other two cases as the root).

To mitigate the confounding effects of non-cancer cells in phyloepigenetic tree 
reconstruction, we performed additional bioinformatic analyses, as follows.

The major source of nonmalignant DNA contamination in esophageal 
tumors is immune cells68; this has been shown by TCGA to be the case for 
most solid tumors62,69. We confirmed this by review of all of our methylation-
profiled samples through immunostaining of the leukocyte common antigen 
(LCA)/CD45 (representative immunohistochemistry images are shown in 
Supplementary Fig. 7), which is a common marker of immune cells and is 
widely used in distinguishing infiltration of immune cells70–73. To precisely 
determine the extent of immune cell contamination, we estimated the frac-
tion of leukocytes in each sample using profiles of immune-specific methyla-
tion probes74, as described previously62,69. Using this method, we noted that  
case ESCC01 was highly pure (estimated immune cell fraction = 7.1%,  
ranging from 1 to 14% in various tumor regions) and cases ESCC03 and 
ESCC05 contained an average of 20% and 32% immune cells, respectively 
(Supplementary Table 7).

We recalculated each phyloepigenetic tree using one of two methods to 
model the mixture of cancer and immune cells within the samples.

(1) As demonstrated in several TCGA marker papers, performing analysis 
using only the subset of Infinium probes unmethylated in purified leuko-
cytes and dichotomizing/binarizing the tumor β value for these probes with 
a minimum β-value cutoff could minimize the influence of contaminating 
leukocytes75–77. We used HM450 profiles from purified leukocyte popula-
tions74 and selected probes with a maximum β value less than 0.3 across all 
leukocyte samples. We then binarized the tumor β values as 1 if they were >0.3 
and 0 otherwise. We computed pairwise distances between binarized values 
using the Jaccard index (dist function in R) and performed tree construction 
using these pairwise distances. The resulting trees are labeled “dichotomized” 
in Supplementary Figure 8.

(2) In an independent approach, we modeled tumor β value as a linear com-
bination of DNA from a mixture of cancer cells and leukocytes. The mixing 
ratio was estimated for each sample on the basis of methylation of leukocyte-
specific probes, as described above and previously62,69. For each probe, we used 
the fixed mixing ratio, the average β value of the probe in purified leukocytes74 
and our measured β value in the tumor to estimate the methylation β value of 
the cancer cells alone. This method was used to reconstruct phyloepigenetic 
trees for each case, and the resulting trees are labeled “immune cell adjusted” 
in Supplementary Figure 8.

Trees for both methods 1 and 2 were compared to the original trees using 
the RF method; RF values are listed in Supplementary Figure 8.

Determining the genomic context of shared versus private methylation 
patterns. Shared versus private probes were identified on the basis of hetero-
geneity between different tumor regions. The groups were further divided into 
‘hypermethylated’ and ‘hypomethylated’ probes, on the basis of comparisons of 
methylation in tumor samples and adjacent normal tissue. For hypermethyl-
ated probes from a specific case, we selected all probes with a methylation β 
value <0.3 in the adjacent normal sample (or a maximum β value of two other 
normal samples <0.3 for ESCC01) and a mean β value across all tumor regions 
that was at least 0.3 higher than the mean of normal sample(s). Similarly, for 
hypomethylated probes, we selected probes with ≥0.6 in the normal sample 
and at least 0.3 higher in the tumor than the mean of normal samples. For 
ESCC01, with no matched normal sample, we averaged the β values from the 
other two normal samples. Hyper- and hypomethylated probe sets are shown 
in Figure 4b–d and Supplementary Figure 9. For the enrichment analysis in 
Figure 4c, promoters were defined as 1.5-kb regions up- and downstream of 
the RefSeq transcription start site, CGIs were taken from the HMM-defined 
set78, and CGI shores and enhancers were defined using the standard Illumina 
450K annotation manifest. PMDs were called using the Roadmap79 normal 
esophagus sample (E079), using an HMM-based segmentation method80. 
Enrichment/depletion P values for the enrichment of private versus shared 

probes in each genomic context were computed on the basis of a hypergeo-
metric test, where null model frequencies were calculated on the basis of all 
probes present on the array (shown as “background” in Fig. 4c).

Immunohistochemistry. Formalin-fixed and paraffin-embedded tissue slides 
were deparaffinized using xylene, rehydrated using xylene and ethanol, and 
then immersed in 3% hydrogen peroxide solution for 10 min, heated in citrate 
at 95 °C for 25 min and cooled at room temperature for 60 min. Slides were 
incubated overnight at 4 °C with antibody to LCA/CD45 (Cell Marque, 145M-
96; diluted 1:100) and visualized using the PV-9000 Polymer Detection System 
following the manufacturer’s instructions (Beijing Zhongshan Golden Bridge 
Biotechnology). Counterstaining was carried out with hematoxylin.
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